

https://datacloudproject.eu/

ICT-40-2020

H2020-ICT-2018-20

ENABLING THE BIG DATA PIPELINE LIFECYCLE ON THE COMPUTING CONTINUUM

D5.3: EVENT-DETECTION AND

INFRASTRUCTURE AND

DEPLOYMENT ADAPTATION

D5.3: Event-detection and infrastructure and deployment adaptation

Page 2 of 24

© Copyright DataCloud Consortium 2022

Document Metadata

Work package WP5

Date 24.10.2022

Deliverable editor Dragi Kimovski (AAU)

Version 1.0

Contributors Christian Bauer (AAU), Narges Mehran (AAU)

Reviewers Andrea Marella (URO), Alexandre Ullises (MOG)

Keywords Scheduling, Adaptation, Machine Learning, Utilization Prediction

Dissemination Level Public

Document Revision History

Version Date Description of change List of contributors

V0.1 10/01/2022 Structure of the deliverable Dragi Kimovski (AAU)

V0.2 22/02/2022 Section 2 Narges Mehran (AAU)

V0.3 20/03/2022 Section 3 Narges Mehran (AAU)

V0.4 20/04/2022 Section 5 Dragi Kimovski (AAU)

V0.5 28/05/2022 Section 3, 4, 6 Christian Bauer (AAU)

V0.6 20/08/2022 Section 7 Christian Bauer (AAU)

V0.7 30/09/2022 Revision of the first completed draft Dragi Kimovski (AAU)

V0.8 01/10/2022 Revision of the evaluation results Christian Bauer (AAU)

V0.9 20/10/2022 Completed reviews Dragi Kimovski (AAU)

V1.0 24/10/2022 Final formatting and layout Brian Elvesæter (SI)

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101016835.

This document reflects only the authors’ views and the Commission is not responsible for any

use that may be made of the information it contains.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 3 of 24

© Copyright DataCloud Consortium 2022

EXECUTIVE SUMMARY

Deliverable 5.3 describes the revised DataCloud scheduling approach and its extension with

a dynamic adaptation algorithm named ADS, implemented as a software tool to lower the

technological barriers to the management of Big Data pipelines over the Computing

Continuum.

The described ADS scheduling and adaptation approach with event-detection improve the

static scheduling with an adaptive run-time execution, empowering domain experts with little

infrastructure and software knowledge to take an active part in the Big Data pipeline

adaptation.

Additionally, Deliverable 5.3 describes a novel event-detection and infrastructure load

algorithms for improvement of the scheduling and adaptation approach.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 4 of 24

© Copyright DataCloud Consortium 2022

TABLE OF CONTENTS

1 INTRODUCTION ..7

2 STATE-OF-THE-ART ...8

3 MODEL ..9

4 ADAPTATION, MONITORING AND ANALYSIS .. 12

5 INTEGRATION ... 16

6 PRELIMINARY EXPERIMENTAL EVALUATION .. 19

7 CONCLUSIONS ... 23

D5.3: Event-detection and infrastructure and deployment adaptation

Page 5 of 24

© Copyright DataCloud Consortium 2022

LIST OF FIGURES

Figure 1: Flow chart of resource prediction. .. 10

Figure 2: Adaptation loop. ... 11

Figure 3: Long-Short Term Memory architecture. .. 14

Figure 4: ADS Scheduling and adaptation tool architecture and integration with
DataCloud. ... 18

Figure 5: ML model runtime prediction... 20

Figure 6: ML model runtime prediction with constant time step 21

Figure 7: ML model runtime prediction with decreasing time step 22

D5.3: Event-detection and infrastructure and deployment adaptation

Page 6 of 24

© Copyright DataCloud Consortium 2022

ABBREVIATIONS

SAA Scheduling and adaptation algorithm

IoT Internet of things

LSTM Long-short term memory

DNN Deep neural network

D5.3: Event-detection and infrastructure and deployment adaptation

Page 7 of 24

© Copyright DataCloud Consortium 2022

1 INTRODUCTION

Cloud computing is a disruptive paradigm that facilitates elastic on-demand resource-as-a-

service provisioning for various Internet applications. The concurrent Internet applications

encompass complex Big Data pipelines, which have a vast set of conflicting requirements,

such as low execution time and communication latency. The requirements of the Big Data

pipelines demand infrastructure design that pushes the services, traditionally bounded within

centralized Cloud data centers, closer to their distributed data sources. The so-called

Computing Continuum, which federates the Cloud services with emerging Edge and Fog

resources, processes data closer to their sources, promising to reduce the network transfer

latency and communication bottlenecks. However, eminent challenges in automating the

management of Big Data pipelines across the Computing Continuum remain, including their

effective scheduling and adaptation over heterogeneous resources from different providers [1].

Overall, the resource management and adaptation for Big Data pipelines across the continuum

requires significant research effort, as the current data processing pipelines are dynamic. In

contrast, traditional resource management strategies are static, leading to inefficient pipeline

scheduling and overly complicated process deployment. Besides, with the advent of

microservices architectures and containerization, the scheduling methods have to consider the

proper data processing characteristics, facilitate networking connectivity, and provide

optimized configuration of the Big Data pipeline workflows with guaranteed scalability from the

execution performance perspective.

To address these needs, we propose in this deliverable an extension of the DataCloud

scheduling approach with a dynamic adaptation algorithm named ADA-PIPE Scheduler (ADS),

implemented as a software tool to lower the technological barriers to the management of Big

Data pipelines over the Computing Continuum. ADS improves the static scheduling with an

adaptive run-time execution and machine learning based resources utilization prediction,

empowering domain experts with little infrastructure and software knowledge to take an active

part in the Big Data pipeline adaptation. ADS covers three iterative phases that improve the

scheduling, deployment, and execution of Big Data pipelines in the computing continuum:

• Initial static scheduling of Big Data pipelines to support their execution over

heterogeneous resources.

• Prediction of resources utilization during Big Data pipeline execution due to the static

scheduling.

• Adaptation of the run-time execution.

Therefore, the Key Innovation Aspects of the deliverable include:

• General model for Big Data pipeline scheduling and adaptation.

• Machine learning based approach for event detection during execution and prediction

of the utilization rate of the resources across the computing continuum.

• Architecture design consisting of two interoperable subcomponents for scheduling and

adaptation that jointly automate the Big Data pipelines lifecycle.

• Detailed performance evaluation of the utilization prediction algorithm used for

improved adaptation.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 8 of 24

© Copyright DataCloud Consortium 2022

2 STATE-OF-THE-ART

This section reviews the state-of-the-art resource prediction methods for adaptation on the

computing continuum.

Tuli et al. [2] proposed a novel prediction and mitigation method using an Encoder long-short

term memory (LSTM) model for large-scale cloud computing infrastructure. This method aims

at reducing the application response time while maintaining the service level agreement

between the application owner and resource provider.

Ngo et al. [3] considered multiple anomaly detection deep neural network (DNN) models with

varying complexity. Afterward, the authors explored selecting one of the models to perform

autonomous detection at the most IoT, Edge, or Cloud layer. For the evaluations, the authors

considered the devices such as NVIDIA Jetson-TX2 and NVIDIA Devbox with four GPU TitanX,

respectively, as the Edge and Cloud server machines.

Thonglek et al. [4] designed a neural network model based on LSTM as a type of Recurrent

Neural Network (RNN) to predict resource allocation based on historical data. This model has

two LSTM layers each of which learns the relationship between: i) allocation and usage, and

ii) CPU and memory. It aims to improve resource utilization in data centers by predicting the

required resource for each data pipeline. Adaptation and event-detection in Fog and Edge

Tu et al. [5] proposed a method based on long short-term memory (LSTM) and deep

reinforcement learning (DRL) to predict task dynamic information in real-time, based on the

observed edge network condition and the server load. By predicting task requirements and

edge devices’ loads, their method offloads tasks to the optimal edge device. In the prediction

model, their goal is to reduce latency and improve service quality.

Chen et al. [6] [7] proposed a learning-based method that generates resource allocation

decisions with the goal of minimizing latency and power consumption called iRAF. iRAF’s

resource allocation action is predicted and obtained through self-supervised learning, where

the training data is generated from the searching process of the Monte Carlo tree search

(MCTS) algorithm.

Tan and Hu [8] used deep reinforcement learning to formulate the resource allocation

optimization problem, where the parameters of caching, computing, and communication are

optimized jointly.

Related methods model the Big Data scheduling and event-prediction as a machine learning

problem that minimizes the data transmission and processing times but neglects the Big Data

pipelines asynchronous exchange and device utilization in the computing continuum.

Furthermore, they cannot properly predict the current or the future resources utilization rate.

We extend these methods by researching an event detection, scheduling and adaptation

method based on a machine learning approach for event detection, utilization prediction and

adaptation.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 9 of 24

© Copyright DataCloud Consortium 2022

3 MODEL

3.1 DATA PIPELINE MODEL

We model Big Data pipeline workflow received through the DEF-PIPE tool as W =(M, E, Q,

MSOURCE, MSINK), where M is the set of Big Data pipeline tasks, E is the Big Data pipelines, Q is

the data queue between the tasks, MSOURCE is the data producers (sources) and MSINK is the

data consumers (sinks).

3.2 RESOURCE MODEL

We model the devices provided by the R-MARKET tool as a set of resources distributed over

the computing continuum. We define the set of resources as R= {r1, r2, … , rn}, where n = |R|

denotes the total number of resources. Thereafter, CPUj
util shows a “non-idle” CPU of a

resource rj. The CPUj
util is defined as: CPUj

util = CPUj
busy + CPUj

wait. CPUj
busy and CPUj

wait,

respectively, show the amount of CPU that is “busy” with processing and “waiting” for other

processes to be finished. In addition, we define the utilized memory as MEMj
util =

𝑀𝐸𝑀𝑗𝑏𝑢𝑠𝑦

𝑀𝐸𝑀𝑗𝑡𝑜𝑡𝑎𝑙
.

3.3 NETWORK MODEL

We model the network channels between the computing resources as the round-trip latency

LAT and network bandwidth BW between the resources ri and rj.

Afterward, we denote the number of data bytes/packets sent and received to/from resources

as:

• DATAsent = (NETbytesSent, NETpacketsSent) denotes the number of packets sent NETpacketsSent

represented as bytes NETbytesSent.

• DATArecv = (NETbytesRecv, NETpacketsRecv) denotes the number of packets (in bytes)

received by the system from other resources.

3.4 MONITORING MODEL

The monitoring states St that is sent at time step t from the resources to the Monitoring and

Analysis component consisting of all monitoring metrics collected from the computing

continuum. Then, we define a capacity of a resource as MONr
t, denoting the monitored data of

resource r at time step t. In this case, St is defined as St = {MONr1
t, MONr2

t, … , MONrn
t} as the

combination of monitored data of a resource ri at a time step t.

3.5 RESOURCE PREDICTION MODEL

The monitoring system on the computing continuum records the performance metrics, such as

CPU, GPU, memory utilization and network usage, along with the runtime execution of tasks.

We train an LSTM-based machine learning model on the monitored and historical data as

depicted in Figure 1. Then, the output is obtained from the LSTM prediction model. In the case

that the difference between the prediction and monitored data is less than a threshold value

(e.g., 0.1), we obtain the predicted under-utilized resources for task scheduling. Otherwise, we

D5.3: Event-detection and infrastructure and deployment adaptation

Page 10 of 24

© Copyright DataCloud Consortium 2022

tune the training model’s parameters or add more historical data to improve the prediction

accuracy.

Figure 1: Flow chart of resource prediction.

3.6 ADAPTATION PROBLEM DEFINITION

The ADS adaptation approach is defined as a loop that cyclically updates every component

contained in the loop. The adaptation loop is shown in Figure 2 and consists of the Big Data

pipeline and the resources registered in the R-MARKET and monitored by the Monitoring and

Analysis component, which is based on Prometheus. Both the Big Data pipeline and the

resources send the gathered monitoring information of all pipelines/resources as a state at a

time step Pt or St respectively to the Monitoring and Analysis component, where t denotes the

current time step. The Monitoring and Analysis component then uses the states Pt and St, and

calculates an action At+1 as an update for the resources, where t+1 denotes the next time step.

This received action At+1 is then used by the Adaptation component to reconfigure the

resources if necessary based on different rules. The adaptation uses monitoring of tasks and

resources to retrieve the states Pt, St . Monitoring component is necessary to obtain information

about failures or performance fluctuations along with under-, over-utilization of resources.

The state, therefore, provides feedback if a resource is able to handle additional load, and

thus, more tasks will potentially be mapped to it for execution. In case that the resource is not

capable of handling the current load,less demanding tasks will be mapped to that resource in

future scheduling cycles and it will be reconfigured accordingly. A monitored resource

information consists of the CPUj, memory MEMj, and storage utilization, in addition to network

bandwidth usage. The Big Data pipeline and resources send their states Pt or St respectively

to the Monitoring and Analysis component. Afterward, given those states, the analyzer will

determine the next action At+1 of the resources. The monitoring feedback will be periodically

retrieved from all registered resources and provided to the analyzer. In case of a resource side

 tart

Training the T
model

Predict the resource
capabilities

Utilize the prediction
information

Is the
prediction error
less than a
threshold

End

 es

 oTune the model s
parameters

D5.3: Event-detection and infrastructure and deployment adaptation

Page 11 of 24

© Copyright DataCloud Consortium 2022

failure, the monitoring mechanism will be alerted of the occurred anomaly. The analyzer uses

this monitoring data to decide if any actions 𝑎 𝜖 𝐴 on the current scheduling plan have to be

applied.

The following actions A are considered in the adaptation approach:

• Resource load within expected parameters: When tasks on resources are well mapped,

and no action has to be taken for these resources, this is denoted in the action set At+1

as such. This state is achieved when a resource is running within expected parameters,

the estimated time of completing a task is not exceeded, or other anomalies occur.

• Resource load under expected parameters: When the monitoring component detects

under-utilization of a resource, tasks of the pipeline that were deemed well-suited for

the resource are mapped to it to be efficiently utilized.

• Resource load over expected parameters: There are multiple options if a resource is

over-utilized. If it is detected that horizontal scaling solves the over-utilization and the

resource instance is capable of being scaled up, it will be reconfigured to be within

expected utilization levels. Furthermore, if an ill-defined task is detected and is mapped

to a resource that isn't capable of fulfilling the computation within a reasonable time

frame, this task will be migrated to another resource.

Figure 2: Adaptation loop.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 12 of 24

© Copyright DataCloud Consortium 2022

4 ADAPTATION, MONITORING AND ANALYSIS

This section provides information on the core component of the ADS adaptation and analysis

tool namely, the machine learning based resources utilization prediction.

4.1 PREPROCESSING OF DATA

The data of monitored resources are stored in comma-separated values (CSV) files.

The manipulation of the data is done in Python 3 using the data analysis module Pandas in

so-called dataframes.

Monitored data is sorted based on the start date of the task from earliest to latest.

The first step of the data preprocessing step is the filtering of this monitored data to only include

necessary values for the analysis. The first filter omits all tasks that didn’t successfully

terminate. Next, for each datapoint, only required columns will be kept.

Categorical data like task_name is then transformed to one-hot encoded [9] data. This is done

to improve the prediction of the resource utilization.

Then, the data gets prepared to be included in multiple modules of the machine learning

framework Pytorch. For this, a custom implemented Pytorch class called GPUDataset is used

that transforms the data further to be able to analyze it.

Afterward, the dataset gets split into a feature set called X and a label set called y.

In both datasets, the values are then scaled with the module scikit-learn [11]. The values of

the feature set are transformed to unit variance scale using standard deviation. The values of

the label set are transformed with min-max scaling that translates each value to a given range.

Standardization of a dataset is a common requirement for machine learning estimators.

In the last step of the data preprocessing, the values will be stored as a Pytorch Tensor data

type.

4.2 PREPARING FOR TRAINING

To observe the performance of a machine learning regression model, we use the following the

evaluation metrics:

• Root Mean Squared Error (RMSE)

o The RMSE of an estimator 𝜃 is defined as the square root of the mean square

error using an estimated parameter 𝜃.

o 𝑅𝑀𝑆𝐸(𝜃) = √𝑀𝑆𝐸(𝜃) = √𝐸((𝜃 − 𝜃)2)

• Mean Absolute Error (MAE)

o The MAE is a measure of errors between observed 𝑦𝑖 and predicted 𝑥𝑖 values

in a dataset containing of 𝑛 observed-predicted value pair.

o 𝑀𝐴𝐸 =
∑𝑛

𝑖 = 1 |𝑦𝑖 − 𝑥𝑖|

𝑛

D5.3: Event-detection and infrastructure and deployment adaptation

Page 13 of 24

© Copyright DataCloud Consortium 2022

The closer the results of these metrics are to zero, the more accurate is the set of predicted

data points.

The performance and metrics of each training run are tracked and compared with help of the

framework Weights & Biases (in short: wandb).

After this, the dataset will be loaded into memory with the aforementioned class GPUDataset

transforming it into a fitting structure. Based on this dataset, hyperparameters for the machine

learning (ML) model are generated, such as the input-, hidden size, and the number of classes

that the output will take into account. Other hyperparameters are the learning rate and number

of epochs. Those hyperparameters are then logged with wandb and these hyperparameters

changes along with the resulting performance of the ML model can directly be compared to

past ML models and their respective hyperparameters.

Next, the ML model gets instantiated. For the prediction of the resource utilization, we use a

Long-Short Term Memory model, which is a further development of Recurrent Neural Networks

(RNN). Next, the corresponding loss function and optimizer are created based on the ML

model. As a loss function, the Pytorch class MSELoss (MSE = Mean Square Error) is used,

and the Pytorch optimizer implementation of the popular AdamW algorithm [10] was chosen.

Figure 3 shows the ML model architecture. As observed, the input data is first sent to an

init_layer, which is a fully connected linear layer. This layer presents the initial hidden state

and internal state of the LSTM module. The output of the init_layer then is sent to the LSTM

module, which then transforms the data with multiple operations seen, that are displayed as

the small blocks between the Transpose and LSTM block in Figure 3. The transformed data

is then passed through the LSTM layer and its corresponding weights:

● 𝑊: 𝑚𝑜𝑑𝑒𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠,
● 𝑅: 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠,
● 𝐵: 𝑏𝑖𝑎𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠.

Once the data has passed through the LSTM layer and its weights, the data is sent to multiple

fully connected layers after another. Each fully connected layer gets smaller in size compared

to the previous fully connected layer. At the final block denoted as abs the absolute of the fc_3

output value is calculated and returned as the prediction of the model for a given input.

Then, the ML model and loss function will be sent to the desired hardware to be trained on.

This hardware device can be a dedicated graphics card able to compute the training via the

parallel computing platform and programming model of Compute Unified Device

Architecture (CUDA) provided by NVIDIA corporation. This is done to reduce the training

time. If no hardware on the device is able to train via CUDA, the training will be done on the

onboard CPU.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 14 of 24

© Copyright DataCloud Consortium 2022

Figure 3: Long-Short Term Memory architecture.

4.3 TRAINING LOOP

The progress of the training loop is visualized by the module TQDM [12], which displays a

training progress bar and how many seconds each iteration takes to complete.

The entire data set is then loaded into a PyTorch Dataloader that provides functionalities such

as defining the batch size, if a batch should be randomly shuffled, multithreading the number

of workers, and the option of using a sampler.

Dataloader Parameters:

• Batch size: How many features are used for the training at once. This also heavily

influences the prediction of the future resource utilization.

• Randomly shuffled: This is a boolean option set to False in the training case, since we

require the time-series to be in chronicle order.

• Number of Workers: The number of workers defines how many subprocesses will be

used for data loading.

• Sampler: A sampler defines the strategy that draws samples from datasets. A PyTorch

SubsetRandomSampler is used as the strategy to ensure randomly picked batches

each iteration, so the model does only take the structure of a batch into account, but

not the entire training cycle of a dataset.

Each batch is then split into a set of features and a set of labels (also called ground truth) and

is sent to a CUDA graphics card if available.

Next, the AdamW optimizer sets the model's parameter gradients to zero. “It is beneficial

to zero out gradients when creating a neural network model. This is because, by default,

D5.3: Event-detection and infrastructure and deployment adaptation

Page 15 of 24

© Copyright DataCloud Consortium 2022

gradients are accumulated in buffers (i.e., not overwritten) whenever .backward() is called.”

PyTorch - Zeroing out gradients in PyTorch [13].

After zeroing the gradients, the feature set gets fed to the ML model to receive a prediction.

This prediction is then compared with help of the loss function and the label set. Depending on

the calculated loss, the gradients of the ML model are calculated with the .backward()

function. Then, the AdamW optimizer uses the calculated gradients and updates the weights

of the ML model with its .step() function. For each prediction, the root mean squared error

and mean absolute error gets calculated and is logged with the loss value to wandb.

This is done for each batch, and once all batches of the dataset are used for the training, the

next training epoch starts, and the entire process is repeated with the updated ML model

parameters for a predefined amount of epochs.

After the training loop is finalized, the corresponding hyperparameters and weights of the ML

model and its optimizer are stored on a hard drive, so it can be used at a later time to either

train the model further or to use it as a prediction model for resource utilization.

4.4 EVALUATION OF THE TRAINING PERFORMANCE

After the training process, the ML model is set to evaluation mode so the predictions of the

training process can be visualized without further training the model. Since the dataset from

the DataCloud monitoring tool used for training was scaled to fit the ML model, the

transformation of the feature and label set is converted to a Numpy array [14] and inverted to

retrieve the original values again. These values are then converted back to Pandas

Dataframes for the calculation of the performance via metrics and to visualize the comparison

of prediction and actual data.

Then, the overall root mean square error and mean absolute error are calculated and logged

with wandb. For the visualization of the results, the Python library Matplotlib is used. The

results are visualized for each label in the labelset, (i.e., CPU utilization, average memory

usage, runtime). Note: The evaluation and visualization of the training dataset are primarily

conducted to compare the performance of different training runs and to observe the behavior

of the prediction if a heavy resource utilization is expected. The actual evaluation is performed

with a test dataset that is independent of the training dataset.

Next, the training dataset, which is gathered from the DataCloud monitoring tool based on

Prometheus, is prepared in the same manner as the training set above for the actual evaluation

of the ML model performance. A prediction is made based on the feature set and is inverted

and compared to the actual data points using the aforementioned metrics and also graphically

visualized with Matplotlib. The results and graphs of each label are logged with wandb for

later comparison and to see the actual performance of the ML model on a previously not seen

dataset.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 16 of 24

© Copyright DataCloud Consortium 2022

5 INTEGRATION

5.1 SCHEDULING AND ADAPTATION INTEGRATION WORKFLOW

In this section, we provide a detailed description of the interactions between the ADS

scheduling and adaptation algorithms with the possible deployment frameworks.

• Step-1: To begin with, the Big Data application owner submits the pipeline for

deployment over the Computing Continuum using DEF-PIPE. In addition, the owner

provides information on the pipeline structure, tasks, and executable data.

• Step-2: After receiving the structure of the pipeline, the scheduling algorithm performs

dependency analysis between the tasks in the pipeline to identify the correct sequence

of tasks and those that can be executed in parallel.

• Step-3: Afterwards, the scheduling algorithm analyzes the requirements of each

specific task, such as processing speed, memory, and storage sizes.

• Step-4: Based on the identified task requirements, the scheduling algorithm searches

for appropriate resources in R-MARKET with associated performance metadata.

• Step-5: The scheduling algorithm analyzes the resources based on the requirements

of the pipeline tasks, creates a schedule for every pipeline task, and sends it to the

deployment and run-time system (such as Kubernetes [15]).

• Step-6: The deployment system deploys the pipeline tasks using the DEP-PIPE tool

on the resources following the schedule provided by the scheduling algorithm.

• Step-7: A monitoring system observes the execution of the Big Data pipeline and the

behavior of the computing continuum resources.

• Step-8: The monitoring information is sent to the adaptation algorithm for analysis of

over-utilization (such as high CPU load or low amount of operating memory available).

• Step-9: If over-utilization is predicted, the adaptation algorithm uses a rule-based

mitigation strategy. For example, in the cases where there is no available operating

memory, a migration of the Big Data pipeline will be performed.

• Step-10: The ADS adaptation algorithm continuously monitors the execution of the Big

Data pipeline and applies the rule-based mitigation actions until the pipeline finishes

with its execution.

The integration of the prediction is done by loading a pre-trained ML model from the disk and

executing it in evaluation mode. For making a prediction, current, monitored data is sent to the

Pre-processing Unit inside the Monitoring and Analysis component, that prepares the data to

be fed into the ML model. This pre-processed data is then forwarded to the Analysis

component part in which the ML model resides.

The ML model returns a prediction based on the monitored data. This prediction is then sent

to the Adaptation component, which then decides based on this prediction and the current

state of the resources and network, how to proceed in regard to scheduling, provisioning and

migration.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 17 of 24

© Copyright DataCloud Consortium 2022

5.2 SCHEDULING AND ADAPTATION FUNCTIONAL ARCHITECTURE

We present in this section the architecture of ADS in one integrated tool in detail.

The architecture of the integrated ADS scheduling and adaptation tool consists of five

components, interconnected with the other DataCloud tools as displayed in Figure 4.

• Dependency analysis orders the candidate tasks scheduled on each resource in a

preference list based on the aggregate pipeline communication time to each task. The

results for the dependencies analysis are provided by DEF-PIPE using the defined API.

• Execution event detection uses data from an external monitoring system to identify

anomalies during execution based on an ML approach defined in Section 4. The data

is received for a Prometheus based monitoring system provided by DEP-PIPE, which

continuously monitors the Big Data pipelines and the computing resources.

• Scheduling maps the pipeline tasks to the resources using a matching theory

algorithm applied to the task and resource preference lists in response to infrastructure

drifts. In order to provide better scheduling results, ADS receives information from the

SIM-PIPE tool that gives suggestions on possible schedules that provide higher

performance.

• Adaptation dynamically applies re-scheduling or migration of the tasks based on the

analysed monitoring received from the execution event detection. Both the ADS

scheduling and adaptation interact with the deployment and orchestration system of

DEP-PIPE and receive information on available resources from R-MARKET to detect

performance bottlenecks using a ML algorithm and take appropriate measures against

them.

• Public API enables the integration of the ADS scheduling and adaptation tool with the

other DataCloud tools. The API provides predefined interfaces, already described in

Deliverable 1.2.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 18 of 24

© Copyright DataCloud Consortium 2022

Figure 4: ADS Scheduling and adaptation tool architecture and integration with DataCloud.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 19 of 24

© Copyright DataCloud Consortium 2022

6 PRELIMINARY EXPERIMENTAL EVALUATION

The evaluation of the performance of the resource utilization prediction algorithm for the

adaptation tool is preliminary done with Python Jupyter notebooks. The ML model to evaluate

is loaded from disk with all necessary parameters. Next the test dataset is loaded and

transformed to be able to be fed to the ML model. Next the features of the test dataset are

forwarded to the ML model, which returns the predicted labels y. The performance of the

prediction is then compared to the actual values with popular regression metrics described in

Section 4.2 Preparing for training.

Following are the parameters used for the testbed:

Parameter Name Parameter Value

Batch size 25

Timesteps into the Future 10

Number of epochs 200

Learning rate 0.001

LSTM input size 19

LSTM hidden size 2451 (19 * 128)

LSTM number of layers 1

LSTM number of classes 1

Loss criterion Mean Square Error Loss (MSELoss)

MSELoss size_average 10

Optimizer AdamW

Table 1: Testbed parameters

Furthermore, for proper evaluation we have defined the following performance metrics:

• Root Mean Squared Error (RMSE)

o The RMSE of an estimator 𝜃 is defined as the square root of the mean square

error using an estimated parameter 𝜃.

o 𝑅𝑀𝑆𝐸(𝜃) = √𝑀𝑆𝐸(𝜃) = √𝐸((𝜃 − 𝜃)2)

• Mean Absolute Error (MAE)

o The MAE is a measure of errors between observed 𝑦𝑖 and predicted 𝑥𝑖 values

in a dataset containing of 𝑛 observed-predicted value pair.

o 𝑀𝐴𝐸 =
∑𝑛

𝑖 = 1 |𝑦𝑖 − 𝑥𝑖|

𝑛

D5.3: Event-detection and infrastructure and deployment adaptation

Page 20 of 24

© Copyright DataCloud Consortium 2022

In what follows we present the preliminary results of the resource utilisation prediction and

event detection for the adaptation too. To begin with, Figure 5 shows a runtime prediction

based on a test dataset in which the black line represents the actual runtime of tasks and the

green line represents the predicted runtime based on previous tasks. We successfully were

able to detect multiple runtime spikes using the ML model. The metrics used for evaluating

how well the ML model are the root mean square error (RMSE) and mean absolute error

(MAE). The results of the metrics can be seen in figure 5 in the top-right corner. The closer the

values are to zero, the closer is the prediction to the actual values.

Figure 5: ML model runtime prediction

As can be observed, the ML model was able to predict multiple important runtime spikes at

time steps 9000, 9500-9600, 9700 and 9800. In addition, the lower runtime trends were

predicted with good accuracies. There are two occurrences in which the ML model did not

predict or wrongly predicted a utilization spike. The first one can be seen at approx. 9250,

where an actual runtime spike occurred but wasn’t detected. The reason for this might be that

a similar occurrence wasn’t found in the training data. The second, wrongly predicted spike

happened for similar reasons. A pattern was found in the training data that led to a runtime

spike that was also predicted to be present in the test dataset.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 21 of 24

© Copyright DataCloud Consortium 2022

Figure 6: ML model runtime prediction with constant time step

As can be seen in Figure 6 a long-running runtime spike was correctly predicted at time step

range 7300-7400. Also, a smaller spike was predicted correctly at 7900-8000. This implies that

the ML model is able to predict future runtime spikes based on historical data if there is a

reappearing pattern. For example, if it is highly probable that a sequence of tasks are executed

after another, part of that sequence can be used to predict how much the successor tasks will

impact the runtime of the whole system. Given the figure 6, we can predict important, long

living runtime spikes but the runtime spike at 7150-7200 was not predicted by our ML model.

This missing prediction, and that the average prediction was higher than the actual average

prediction for low runtime tasks need to be improved in further development.

In Figure 7, a smaller time step range was chosen to be able to analyze smaller changes in

the runtime in more detail. The overall trend was predicted and the first runtime spike could be

predicted with some minor error in the time step offset. The next runtime spike could not be

predicted properly, since the next predicted spike was off by a larger time frame than the first

predicted runtime spike. This could be due to a unique runtime spike not seen before, or since

there is an offset between the actual runtime spike and the predicted one, it is also possible

that the runtime spike happened at a later time frame than it did in this scenario. Further

improvements in the ML model and investigation and training on additional data might improve

the prediction to be able to better predict such runtime spikes at the correct time frame.

The latter two runtime spikes could be predicted with some error in the amplitude in the

prediction. While being correct in detecting a spike, these predicted outcomes are too low

compared to the actual data and might be the result of not taking sufficient action.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 22 of 24

© Copyright DataCloud Consortium 2022

Figure 7: ML model runtime prediction with decreasing time step

D5.3: Event-detection and infrastructure and deployment adaptation

Page 23 of 24

© Copyright DataCloud Consortium 2022

7 CONCLUSIONS

In this deliverable we presented an extension of the scheduling algorithm and its extension

with adaptation approach for automating the lifecycle of Big Data pipelines execution in the

Computing Continuum. The presented ADS approach separates the scheduling of the Big Data

pipelines from the run-time adaptation stage, enables event detection and prediction of

resources utilization for improved execution adaptation, thus empowering domain experts with

little infrastructure and resources know-how to participate in their operation actively. ADS

introduced a two-sided matching-based scheduling and machine learning adaptation methods

integrated with R-MARKET resources and DEP-PIPE deployment tool. In addition, ADS is

capable to adapt the execution of the pipeline on-the-fly by employment of state model to

improve the execution the tasks based on their run-time requirements.

We, therefore, presented the detailed architectural design of the ADS tool and conducted a

feasibility analysis for the resource’s utilisation end event detection prediction. We presented

concrete scenarios supported by authentic snapshots demonstrating how the ADS

implementation automate the management of the lifecycle on a real Computing Continuum

infrastructure.

D5.3: Event-detection and infrastructure and deployment adaptation

Page 24 of 24

© Copyright DataCloud Consortium 2022

REFERENCES

[1] Barika, M., Garg, S., Zomaya, A. Y., Wang, L., Moorsel, A. V., & Ranjan, R. (2019).
Orchestrating big data analysis workflows in the cloud: research challenges, survey,
and future directions. ACM Computing Surveys (CSUR), 52(5), 1-41.

[2] Tuli, S., Gill, S. S., Garraghan, P., Buyya, R., Casale, G., & Jennings, N. (2021). Start:
Straggler prediction and mitigation for cloud computing environments using encoder
lstm networks. IEEE Transactions on Services Computing.

[3] M. V. Ngo, T. Luo, H. Chaouchi, & T. Q. Quek. Contextual-bandit anomaly detection
for IoT data in distributed hierarchical edge computing. In 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS) (pp. 1227-1230). IEEE,
November 2020.

[4] K. Thonglek, et al. "Improving resource utilization in data centers using an LSTM-based
prediction model." 2019 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2019.

[5] Y. Tu, H. Chen, L. Yan, and X. Zhou. Task offloading based on LSTM prediction and
deep reinforcement learning for efficient edge computing in IoT. Future Internet, 14(2),
30, 2022.

[6] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, J. Hu. iRAF: A Deep Reinforcement
Learning Approach for Collaborative Mobile Edge Computing IoT Networks. IEEE
Internet Things J. 2019, 6, 7011–7024.

[7] J. Chen, S. Chen, S. Luo, Q. Wang, B. Cao, X. Li. An Intelligent Task Offloading
Algorithm (iTOA) for UAV Edge Computing Network. Digit. Commun. Netw. 2020, 6,
433–443.

[8] L. T. Tan and R. Q. Hu, "Mobility-aware edge caching and computing in vehicle
networks: A deep reinforcement learning." IEEE Transactions on Vehicular Technology
67.11 (2018): 10190-10203.

[9] Brownlee, Jason, Machine Learning Mastery, Why One-Hot Encode Data in Machine
Learning? accessed 22 September 2022, <https://machinelearningmastery.com/why-
one-hot-encode-data-in-machine-learning/>. Accessed 22 September 2022

[10] Kingma, D. P., and Jimmy Ba. "Adam: A method for stochastic optimization."
arXiv preprint arXiv:1412.6980, 2014.

[11] F. Pedregosa, et al. "Scikit-learn: Machine learning in Python." the Journal of
machine Learning research 12 (2011): 2825-2830.

[12] da Costa-Luis, Casper, et al. "tqdm: A fast, Extensible Progress Bar for Python
and CLI." Zenodo (2021).

[13] PyTorch 2022, Zeroing out gradients in PyTorch accessed 13. September
2022,
<https://pytorch.org/tutorials/recipes/recipes/zeroing_out_gradients.html#zeroing-out-
gradients-in-pytorch>

[14] Van Der Walt, Stefan, S. Chris Colbert, and Gael Varoquaux. "The NumPy
array: a structure for efficient numerical computation." Computing in science &
engineering 13.2 (2011): 22-30.

[15] Luksa, Marko. Kubernetes in action. Simon and Schuster, 2017.

https://pytorch.org/tutorials/recipes/recipes/zeroing_out_gradients.html#zeroing-out-gradients-in-pytorch
https://pytorch.org/tutorials/recipes/recipes/zeroing_out_gradients.html#zeroing-out-gradients-in-pytorch

