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EXECUTIVE SUMMARY 

This document describes the research activities related to the resources provisioning and 
scheduling of Big Data pipelines and the related algorithms and tools developed within 
the framework of the DataCloud project. The document is primary focused on the 
undertakings conducted in Task 5.1, namely the modelling and development of the ADA-PIPE 
tool. Therefore, first the requirements for the scheduling and provisioning algorithm have been 
analysed and, thus, a matching based scheduling algorithm was proposed. Sources for 
requirements discovering included state-of-the-art analysis using literature review and 
interviews carried with business case partners.   

As a result of requirements analysis, we propose a tool and related algorithms for data-aware 
scheduling across the computing continuum. The main contributions of this work include:  

 A model for quantifying the data pipeline processing and queuing time tailored to 
asynchronous data exchange by utilizing the data queues. 

 A ranking strategy including the transmission time in the resource-side ranking to 
localize the processing of users' data and meet the response time quality of service. 

 A modified two-sided stable matching model based on the resource utilization for 
scheduling data pipeline on resources. 

 An algorithm for scheduling of complex data pipeline on resources based on a two-
sided stable matching model by considering the resource utilization. 

The proposed tool also supports integration with different orchestration systems (including 
MAESTRO and Kubernetes) and monitoring systems (including Kubernetes). The proposed 
tool has been validated on a real-life computing continuum infrastructure over a specifically 
tailored DataCloud use case application.   
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1 INTRODUCTION 

The Internet of Things (IoT) allows seamless cyber-physical integration of computing services 
in various application domains. The modern IoT data pipeline applications generate massive 
amounts of data and encompass complex processing tasks, including gathering, storing, and 
analysing raw-input data, which can overwhelm centralized Cloud-based computing 
infrastructures [1]. Without proper processing power for timely handling, the collected assets 
often remain unused, which in the absence of a meaningful exploitation expose more risks 
than value. 

Recently, the so-called computing continuum that federates the Cloud services with emerging 
Fog and Edge resources, presented a relevant computing alternative for supporting the 
complex Big Data pipelines. However, eminent challenges in automating the processing of the 
IoT pipelines across the Computing Continuum still remain [2]. These include scheduling, 
deployment, and orchestration of the Big Data pipelines. Unfortunately, the heterogeneity of 
the computing continuum limits the possibility for utilizing resources provisioned by different 
providers, which further hinders the execution of the complex data pipelines with strict 
computing and network requirements.  

Overall, the resource management across the continuum requires significant research effort, 
as the current data processing pipelines are dynamic, whereas traditional resource 
management strategies are static, which leads to inefficient pipelines scheduling and overly 
complex process deployment [3, 4]. Besides, with the advent of microservices architectures 
and containerization, the scheduling approaches must consider the proper data stream 
characteristics, facilitate networking connectivity, and provide optimized configuration of the 
complex pipeline with guaranteed scalability from the execution performance perspective.   

Therefore, in this deliverable, we describe a novel matching-based data pipeline scheduling 
model, named ADA-PIPE Scheduler (ADS), to address the problem of scheduling complex Big 
Data pipeline applications represented as directed acyclic graphs on heterogeneous 
computing continuum resources. ADS approaches this problem using matching theory 
principles involving two sets of players [5]: 

 Pipeline steps (tasks) rank the continuum resources based on their pipeline processing 
and queuing time. 

 Cloud, Fog, and Edge resources rank the tasks based on their pipeline transmission 
time. 

The ADS two-sided matching-based scheduling model, integrated within the ADA-PIPE tool, 
assigns tasks to resources based on their mutual preferences, aiming to maximize the 
aggregated gains of the tasks and the resources in terms of pipeline processing, and data 
transfer and queuing times. 

Hence, the main contributions of this deliverable are: 

 A model for quantifying the data pipeline processing and queuing time tailored to 
asynchronous data exchange by utilizing the data queues. 

 A ranking strategy including the transmission time in the resource-side ranking to 
localize the processing of users' data and meet the response time quality of service. 
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 A modified two-sided stable matching model based on the resource utilization for 
scheduling data pipeline on resources. 

 An algorithm for scheduling of complex data pipeline on resources based on a two-
sided stable matching model by considering the resource utilization. 
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2 STATE OF THE ART 

This section reviews the state-of-the-art in task scheduling for Big Data pipelines in Cloud, Fog, 
and Edge computing environment. We therefore create taxonomy, based on the optimisation 
objectives utilized by the related approaches in the following categories:  

 Traffic-aware scheduling: Arkian et al. [6] presented a geo-distributed stream 
processing autoscaling model with the aim of maintaining a sufficient maximum 
sustainable throughput between edge devices. Their model optimizes the throughput 
per task of the workflow application. Tamiru et al. [7] designed an integrated scheduler 
in Kubernetes orchestration platform for multi-cluster computing environments. The 
authors modelled the resource requirement of the workload, the ingress traffic, and the 
resource capacity of each cluster to decide on an appropriate application deployment. 

 Cost-aware scheduling: De Maio and Kimovski [8] investigated the potential of Fog 
computing for scheduling extreme data scientific workflows with the goal of optimizing 
processing time, reliability and user's monetary cost. Therefore, the authors modelled 
decomposition of the workflow with parallel tasks based on their dependencies, and 
proposed a multi-objective optimization-based scheduling method. Sharghivand et al. 
[4] proposed a two-sided matching solution to schedule IoT-data-analytics tasks on 
cloudlets as part of the Edge environment. Their model determines the costs of the 
Edge services based on cloudlet's and user's preferences to match the resources to 
applications.  

 Latency-aware scheduling: Menouer [9] designed a multi-criteria decision-analysis 
model to solve the scheduling problem. Therefore, the author presented the TOPSIS-
based decision-making algorithm according to criteria such as the utilization of 
resources, alongside the processing time the workflow tasks and data transmission 
time. Fahs and Pierre [10] proposed a latency-aware scheduler for a Fog computing 
infrastructure. The authors aimed to identify an appropriate replica scheduling model 
that minimizes the tail user-to-replica latency and balances the workloads across 
replicas of an application (i.e., minimizing imbalance). Hoseiny et al. [11] designed a 
scheduling algorithm, based on an optimization model that is a weighted sum of overall 
pipeline processing time, energy consumption, and percentage of completed tasks with 
a given deadline. Lujic et al. [11] designed a model named SEA-LEAP as a data 
locality-aware scheduling method to minimize overall processing time for on-demand-
analytics applications. The authors aimed to increase traffic safety by utilizing Edge 
computing infrastructure. 

 ADS contribution: These works investigate the task scheduling as an optimization 
problem that minimizes the traffic, monetary cost or latency as main objectives, and 
neglect the processing, queuing and transmission times. We extend the related 
methods by researching a novel IoT data pipeline scheduling method based on a two-
sided matching that considers the interests of the involved stakeholders to maximize 
the aggregated utility of tasks and resources to reach a stable equilibrium. 
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3 REQUIREMENTS ANALYSIS 

The requirements for the big data pipelines scheduling of the DataCloud project are extracted 
from two main sources: analysis of the state-of-the-art literature (presented in Section 2) and 
the interviews with the business partners. 

We therefore utilize the following requirements to guide the modelling process of the ADA-
PIPE scheduler:  

 RQ-ADAPIPE-1: Metric Specific Application Scaling. 

 RQ-ADAPIPE-4: Limited Dynamic Scheduling. 

 RQ-ADAPIPE-5: Requirement Definition per Task. 

 RQ-ADAPIPE-8: QoS Guarantee for Tasks with Strict Deadlines. 

 RQ-ADAPIPE-10: Avoidance of Highly Utilized Resources.  

 RQ-ADAPIPE-12: Task Offloading on Edge and Mobile Devices.  

 RQ-ADAPIPE-14: Data-Aware Pipeline Scheduling.  

 RQ-ADAPIPE-15: Low Scheduling Overhead.  

Besides, we also consider the following user stories, gathered with the AS-IS and TO-BE 
interviews described in Deliverable D1.1:  

 CER.ADA.US.03: Schedule the tasks in transparent manner.  

 MOG.ADA.US.01: Identify resources on the run that can support high stream data 
rates.  

 MOG.ADA.US.04: Provide support for both online and offline scheduling. 

 JOT.ADA.US.04: Move the data close to the resource. 

 JOT.ADA.US.08: Maintain request processing latency bellow 200 ms. 

 BOSCH.ADA.US.02: Define the resources where the tasks can be migrated. 

 BOSCH.ADA.US.04: Define the architecture and computing requirements of each 
task.  

 TELLU.ADA.US.01: Identify resources where side pipelines can be executed in 
parallel.   

Therefore, from the list of the requirements, we can conclude that the ADS scheduler and the 
ADA-PIPE tool should provide means for low-latency scheduling, capable of offloading the task 
execution on Fog and Edge devices with avoidance of highly utilized resources. Besides, the 
ADS scheduler should be able to identify resources that can support processing of high data 
streams, while maintaining the latency for processing the requests of the use case applications 
below 200ms.   
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4 SCHEDULING MODEL 

4.1 PROBLEM DEFINITION 

We represent a scheduling problem as a matching game using two disjoint sets of players: 

 the tasks S of the big data pipeline W, and 

 the resources registered in R-MARKET R. 

The game aims to match a task si in S to a resource rj in R with sufficient capacity that 
optimizes the aggregated utility of application and resource provider. Therefore, our aim is to 
maximize the aggregated utility function by determining an equilibrium for stable matching of 
the tasks to appropriate resources. 

We define the pipeline as directed acyclic graph (DAG) that comprises different paths from the 
producers to consumers, we inspect a valid matching sched for the tasks of every pipeline 
level D(d) to maximize the aggregated utility function (see Section 3.2) of the tasks si in D(d) and 
the resources sched [d, si]: 

 

Subject to: 

A task si in in level D(d) is matched to exactly one resource from its resources preference list 
RPL[si]: 

 

A resource can execute multiple tasks that are members of its task preference list TPL[rj] and 
within its capacity cj considering the pipeline pipui: 

 

The matching does not contain blocking pairs of tasks and resources that prefer matching each 
other rather than their current assignments. 

4.2 RANKING AND UTILITY MODEL 

The model for matching tasks to resources uses a double ranking and utility strategy: task-
sided and resource-sided. 

4.2.1 Task-side ranking  

The task side ranking orders the resources for a task si in a resource preference list RPL[si] 
based on the aggregated pipeline processing Tp and queuing times Tq: 
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4.2.2 Task-side utility  

The task-side utility Us represents the gain obtained by a task si scheduled on one of its 
preferred resources rj in RPL[si]: 

 

where FIRSTTpq(RPL[si]) and LASTTpq(RPL[si]) are lowest, respectively highest pipeline 
processing and queuing times of the resources in RPL[si]. The first resource in the preference 
list RPL[si] provides the highest utility equals to one. 

4.2.3 Resource-side ranking 

The resource side ranking ranks the tasks for a resource rj in a task preference list TPL[rj] 
based on the pipeline transmission time Tc(su,pipui,si): 

 

where tc(su,e,si) is the data transmission time for data e from task su to task si.  

4.2.4 Resource-side utility 

The resource-side utility presents the gain obtained by a resource rj for executing one preferred 
task si in TPL[rj]: 

 

where FIRSTTc(TPL[rj]) and LASTTc(TPL[rj]) represent the pipeline transmission time of first, 
respectively last task in the preference list TPL[rj]. 
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5 SCHEDULING ALGORITHM  

Algorithm 1 applies a matching-based heuristic method to schedule independent tasks per 
level of big data data pipeline on the available resources in R-MARKET. 

After initializing the scheduling lists, (line 2), the algorithm loops over the dependency levels 
of the pipeline to rank the resources for independent tasks (line 5), and to rank the tasks for 
the resources (lines 6 - 12). After ranking, the algorithm attempts to find the appropriate 
matches based on the available resources (line 13). The matching function matches the task 
to one of its preferred resources, and then allocates the resource due to task's required 
capacity (despite of defining a fixed capacity for each resource in advance. The matching 
function loops over the task and resource preference lists, in addition to checking for the over 
capacity and the full capacity of resources. Therefore, the matching reaches to an equilibrium 
while no task or resource have no other preferences than their current matched choices. 
Finally, the scheduling algorithm estimates the earliest start time and assigns the appropriate 
resource to the tasks (lines 14 - 16). 

 

The task-side ranking algorithm presented in Algorithm 2 receives as input the tasks of level, 
the data pipeline, and the set of resources and channels. The resource that guarantees a lower 
pipeline processing and queuing time receives a higher rank. The task-side ranking algorithm 
first initializes the resource preference lists for every task with the empty set in line 2. 
Thereafter, it filters the resources that do not satisfy the memory MEM(si,pipui) and storage 
STOR(si,pipui) requirements of a task (line 5). Afterward, it creates a list of tuples for each task 
that associates the pipeline processing and queuing time of a task on a resource (line 6). 
Finally, the algorithm sorts the resource preferences of each task based on its pipeline 
processing and queuing time in descending order in line 11. 
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Resource-side ranking algorithm presented in Algorithm 3, receives as input the resource 
preference lists computed in Algorithm 2, along with the big data pipeline, the resource set, the 
set of network channels L, and subset of tasks in level D(d). Similarly, the algorithm initializes 
the task preference lists of a resource with the empty set in line 2. Afterward, each resource 
ranks the tasks in a preference list in line 8 based on its pipeline transmission time. Finally, the 
algorithm sorts the task preferences in descending order in line 12 based on the pipeline 
transmission time. Hence, the task with a lower pipeline transmission time receives a higher 
rank. 
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6 ADA-PIPE SCHEDULER TRACE EXAMPLE 

Figure 1 illustrates an example of using Algorithm 1 in the following steps: 

1. Figure 1(a) exemplifies the input for scheduling four inter-dependent tasks on a set of 
resources r0, r1, r2. 

2. Figure 1(b) denotes three independent levels of big data pipeline. The levels are 
computed by considering the downward levels starting from the producers of data and 
ending with consumers of data. In this manner, the task s0 is in the first level since it 
consumes data received from producer(s). The second level consists of all the tasks 
dependent on the first-level tasks, which are tasks s1 and s2 in our example. Since s3 
is dependent on tasks s1 and s2, then third level consists of just one task. 

3. Figure 1c continues with the ranking of the tasks RPL and resources TPL for each 
level. In resource preference list of task s0, r2 has the highest rank because it provides 
the lowest pipeline processing and queuing time. From the other side, there is just one 
task in task preference list of r2, therefore, r2 matches to s0. 

4. Figure 1d shows that r2 and r1 matches to tasks s1 and s2, respectively, because they 
rank these tasks as the highest ones with the lowest pipeline transmission times. 

5. Figure 1e depicts the last level's task s3 that matches to its first preference r0, which 
provides lowest pipeline processing and queuing time. 

6. Figure 1f shows the scheduled resources and the earliest estimated start time est for 
the tasks of all levels. 

 

Figure 1: ADA-PIPE Scheduler trace example 

(a) Exemplified IoT data pipeline work-
flow DAG.

(b) Determining the levels of data
pipeline workflow. (c) Ranking and matching of the 1st level.

(d) Ranking and matching of the 2nd level.

(e) Ranking and matching of the 3rd level.

(f) Scheduling output and estimated
start times of tasks.
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7 PRELIMINARY EVALUATION  

We implemented the ADS matching-based big data pipeline scheduling in Python v.3.9 using 
the matching library [13]. Then, we integrated our customized scheduler in Kubernetes 
orchestrator tool v1.21 by utilizing the Python client library for Kubernetes v17.17 [14]. The 
script required to run the ADS model is available in the DataCloud code repository1.  

7.1 INFRASTRUCTURE SETUP 

We deploy ADA-PIPE as a RESTful service in the Carinthian Computing Continuum C3 
infrastructure testbed, providing a rich set of resources across the Cloud, Fog, and Edge 
layers, illustrated in Table 1. 

Table 1: Infrastructure configuration 

 

We utilized the Prometheus operator monitoring system v0.45.02  for monitoring the 
Kubernetes services and deployment alongside the network traffic, bandwidth, latency and 
resources utilization rates.   

We utilized the asynchronous message queue architecture KubeMQ v2.2.13 to implement data 
exchange between tasks. KubeMQ provides a message queue for every pipeline task to store 
messages from its upstage tasks.  

7.2 RELATED WORK COMPARISON  

We conduct the performance comparisons against three state-of-the-art approaches:  

 Heterogeneous Earliest Finish Time -- only Cloud (HEFT-oC) schedules all tasks on 
the Cloud and selects the proper Cloud instances using a bottom ranking approach to 
optimize the pipeline completion time [15]. 

 Kubernetes container scheduling strategy (KCSS) schedules all tasks on Edge and 
Fog resources using the Topsis algorithm based on multiple criteria such as pipeline 

 
 
 
1 https://github.com/SiNa88/example-kubernetes-scheduler  

2 https://github.com/prometheus-operator/prometheus-operator  

3 https://github.com/kubemq-io/kubemq-community/releases/tag/v2.2.10  

Cloud Fog Edge
AWS Google A1/Exoscale A1/Exoscale Edge Edge

-Virginia n2 large medium large medium NvJ RPi4 RPi3
t2.xlarge -standard instance instance instance instance

CPU (#cores) 4 4 4 2 24 16 4 4 4
MEM (GB) 16 16 8 4 32 16 4 4 1
STOR (GB) 8 8 10 10 32 32 16 16 16
BW (Mbit s− 1) 100 870 840 839 920 900 450 800 328
LAT (ms) 101 23 11.5 11.9 0.3 0.3 1 0.4 1
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completion time, the number of Docker images and the number of running containers 
on each resource [9]. 

 SEA-LEAP minimizes data pipeline completion time, and identifies an Edge resource 
closer to the dataset distributed on multiple Fog and Edge resources [12]. 

7.3 USE CASE APPLICATION  

We selected a representative traffic management system case study following road safety 
inspection concerns. We represent this application as a DAG of six tasks depicted in Figure 2. 
Every task communicates with its upstage tasks through a message queuing system: 

1. Encoding encodes the raw video in various bitrates and resolutions. 

2. Framing utilizes OpenCV to produce still frames. 

3. Inference creates an inference model with high accuracy. 

4. Dataset storage provides the stored records for other stages. 

5. Training updates and retrains the multi-class classification model with a high accuracy. 

6. Packaging and delivery provide the detected signs in the format required by the drivers. 

 

Figure 2: Use case application pipeline 

7.4 MONITORING   

We collect the computing and networking metrics with the Prometheus monitoring tool4 in the 
following manner: 
 

1. Get remotely connected to the utilized devices.  

2. Redirect the traffic received on port number 9090 to the local machine where the data 
can be analysed. The following command redirects the traffic from a specific port of 
the Kubernetes master node to your local machine: 

 
 
 
4 https://prometheus.io/docs/introduction/overview/  
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ssh -L 9090:localhost:9090 edgegateway@egs-itec.aau.at 
 

 
3. We Set up a kube-latency5 container on a worker node to measure bandwidth and 

latency of the Kubernetes network.  

4. We use the following commands to gather various monitoring data:  

 physical link latency between every two nodes will be calculated: 
sort_desc(avg(ping_durations_s{quantile='0.99'})by(source_node_name,dest_nod
e_name))  

 the amount of data (in terms of bytes) received by any node during the last hour: 
sort_desc(rate(node_network_receive_bytes_total{device="eth0"}[1h]) *8 
/1024/1024) 

 the amount of data received by a special container:  
sort_desc(container_network_receive_bytes_total{pod=~"name.*"} 

7.5 SCHEDULER EXECUTION 

The scheduler executes in a main loop. The main loop of the scheduler waits for a new pipeline 
task comprising a container of the use case application in the pending state alongside a 
specification assigned by the ADS. 

Then, it sets the pending pod to the node selected based on the ADS algorithm. Afterward, 
one by one the pending pods will be deployed and executed on the selected devices, as shown 
in the figure below: 

 
 
 
5 https://github.com/simonswine/kube-latency  
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The output of the scheduling plan shows the nodes on which the nodes will be scheduled such 
as gateway device in C3 testbed: 

 

After the execution of scheduler, the pods status changes to Running state: 

 

7.6 EVALUATION SCENARIO 

We evaluated the ADA-PIPE scheduler compared to the related SEA-LEAP, KCSS, and 
HEFT-oC methods using the video pipeline for traffic sign classification. We selected a raw 9 
seconds long video with size of 45 MB.  

We designed a set of experiments according to the pipeline characteristics related to the 
encoding bitrate. The encoding bitrate experiments investigate the impact of CPU 
requirements for encoding the raw video segment. We considered five encoding bit rates of 
200, 1500, 3000, 6500, 20000 kbps. We further considered two machine learning models with 
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70% and 90% accuracy for the inference and training tasks with different CPU requirements. 
We fixed the size of the data element to 2560 kbytes. 

7.7 RESULTS  

Figure 3 shows that by increasing the number of tasks while providing the same amount of 
computing and storage resources, the task utility reduces. The reason is that ADS matches 
the higher-ranked tasks to highly provided bandwidth resources such as the Edge instances. 
Therefore, there are just a few tasks matched to their lower-ranked resources that do not 
impact on the whole utility. From the resource-side perspective, the resource utility increases 
and ADS matches more tasks to resources because of the larger available resource capacities. 
However, when the number of tasks reaches to thirty because of the limited resource 
capacities, the resource-side utility reduces. 

 

Figure 3: Task and resources utility for different number of tasks 

Figure 4 depicts the earliest start time of pipeline tasks. As observed, by utilizing the queue as 
a temporary storage between tasks, especially between inference and training tasks, alongside 
training and packaging tasks, we reach improvement in terms of the earliest start time of the 
tasks. 
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Figure 4: Earliest start time for each task in the pipeline 

Figure 5 denotes that ADS reduces the completion time by 14 compared to SEA-LEAP 
because ADS selects the Edge instance that is closer to the sources and the dataset that is 
located on the Fog resources.  

In addition, ADS reduces the completion time, on average, 56% compared to KCSS, which 
tends to schedule the tasks on the Cloud instances without considering the transmission time 
to reach the Cloud; however, this strategy is not proper for deadline-constrained applications. 

In other words, unlike the related methods, ADS searches for tradeoff by scheduling on 
resources with lower pipeline transmission time to the data sources and higher computational 
speed; therefore, it improves the completion time by reducing the pipeline transmission time 
and the pipeline processing and queuing time that leads to reduced pipelines's completion 
time. 

 

Figure 5: Pipeline completion time for different bitrates 
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8 CONCLUSIONS 

In this deliverable, we introduced ADS, a matching-based scheduling method integrated within 
the DataCloud infrastructure that considers the pipeline processing and transmission times for 
scheduling the Big Data data pipeline on the computing continuum. ADS uses a two-sided 
matching algorithm to schedule the tasks based on their pipeline processing requirements, and 
the available computation and communication capabilities from the resource provider 
perspective. 

To solve the scheduling and provisioning problem, ADS determines the dependency levels of 
pipeline's DAG. Afterward, ADS approaches this problem using matching theory principles 
involving two sets of players. First, every level of pipeline ranks the continuum resources based 
on their pipeline processing and queuing times. Second, Cloud, Fog, and Edge resources rank 
the tasks of the level based on their pipeline transmission time. After ranking, ADS matches 
the tasks to resources in the case they have enough capacity until all the data pipeline tasks 
are matched to the resources.  

We have conducted preliminary evaluation of ADS and integrated it with Kubernetes and 
Prometheus. The results also show that ADS is more energy-efficient than other related work 
approaches. In other words, since ADS inspects the Cloud, Fog, and Edge resources that have 
enough computational capabilities and can lower pipeline transmission time, we achieved 14 
- 68% lower completion time. 

In addition, we also provide in this deliverable a full user manual, case study application and 
source code of the scheduler.  

In the future, we plan to further explore a heuristic-, matching-based pipeline scheduling in the 
computing continuum, and integrate the scheduler with SIM-PIPE, R-MARKET and DEP-PIPE. 
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