

https://datacloudproject.eu/

ICT-40-2020
H2020-ICT-2018-2020

ENABLING THE BIG DATA PIPELINE LIFECYCLE ON THE COMPUTING CONTINUUM

D5.1: DATA-AWARE RESOURCE

PROVISIONING ACROSS THE

COMPUTING CONTINUUM

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 2 of 25

© Copyright DataCloud Consortium 2021

Document Metadata

Work package WP5

Date 17.12.2021

Deliverable editor Dragi Kimovski (AAU) and Narges Mehran (AAU)

Version 1.0

Contributors Radu Prodan (AAU)

Reviewers Alexandre Ulisses (MOG) and Aleena Thomas (SINTEF)

Keywords Scheduling, Matching theory, Execution optimization

Dissemination Level Public

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 06.06.2021 1st structure of the deliverable. Dragi Kimovski (AAU)

V0.2 01.09.2021 1st draft of the user manual. Narges Mehran (AAU)

V0.3 01.09.2021 Model description. Narges Mehran (AAU)

V0.4 01.10.2021 Related work. Dragi Kimovski (AAU)

V0.5 01.10.2021 Trace example. Dragi Kimovski (AAU)

V0.6 01.11.2021 Evaluation. Narges Mehran (AAU)

V0.7 15.11.2021 Completion of 1st draft. Dragi Kimovski (AAU)

V0.8 01.12.2021 Reviewers’ comments addressed. Dragi Kimovski (AAU)

V1.0 17.12.2021 Final formatting and layout. Brian Elvesæter (SI)

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101016835. This document reflects only the
authors’ views and the Commission is not responsible for any use that may be made of the
information it contains.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 3 of 25

© Copyright DataCloud Consortium 2021

EXECUTIVE SUMMARY

This document describes the research activities related to the resources provisioning and
scheduling of Big Data pipelines and the related algorithms and tools developed within
the framework of the DataCloud project. The document is primary focused on the
undertakings conducted in Task 5.1, namely the modelling and development of the ADA-PIPE
tool. Therefore, first the requirements for the scheduling and provisioning algorithm have been
analysed and, thus, a matching based scheduling algorithm was proposed. Sources for
requirements discovering included state-of-the-art analysis using literature review and
interviews carried with business case partners.

As a result of requirements analysis, we propose a tool and related algorithms for data-aware
scheduling across the computing continuum. The main contributions of this work include:

 A model for quantifying the data pipeline processing and queuing time tailored to
asynchronous data exchange by utilizing the data queues.

 A ranking strategy including the transmission time in the resource-side ranking to
localize the processing of users' data and meet the response time quality of service.

 A modified two-sided stable matching model based on the resource utilization for
scheduling data pipeline on resources.

 An algorithm for scheduling of complex data pipeline on resources based on a two-
sided stable matching model by considering the resource utilization.

The proposed tool also supports integration with different orchestration systems (including
MAESTRO and Kubernetes) and monitoring systems (including Kubernetes). The proposed
tool has been validated on a real-life computing continuum infrastructure over a specifically
tailored DataCloud use case application.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 4 of 25

© Copyright DataCloud Consortium 2021

TABLE OF CONTENTS

1 INTRODUCTION .. 8

2 STATE OF THE ART ... 10

3 REQUIREMENTS ANALYSIS ... 11

4 SCHEDULING MODEL .. 12

5 SCHEDULING ALGORITHM ... 14

6 ADA-PIPE SCHEDULER TRACE EXAMPLE ... 16

7 PRELIMINARY EVALUATION .. 17

8 CONCLUSIONS ... 23

9 REFERENCES ... 24

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 5 of 25

© Copyright DataCloud Consortium 2021

LIST OF FIGURES

FIGURE 1: ADA-PIPE SCHEDULER TRACE EXAMPLE .. 16

FIGURE 2: TASK AND RESOURCES UTILITY FOR DIFFERENT NUMBER OF TASKS .. 21

FIGURE 3: EARLIEST START TIME FOR EACH TASK IN THE PIPELINE........................ 22

FIGURE 4: PIPELINE COMPLETION TIME FOR DIFFERENT BITRATES 22

FIGURE 5: USE CASE APPLICATION PIPELINE ... 18

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 6 of 25

© Copyright DataCloud Consortium 2021

 LIST OF TABLES

TABLE 1: INFRASTRUCTURE CONFIGURATION .. 17

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 7 of 25

© Copyright DataCloud Consortium 2021

ABBREVIATIONS

ADS ADA-PIPE scheduler

RPL Resources preference list

TPL Tasks preference list

IoT Internet of things

CPU Processor

MEM Operating memory

STOR Storage

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 8 of 25

© Copyright DataCloud Consortium 2021

1 INTRODUCTION

The Internet of Things (IoT) allows seamless cyber-physical integration of computing services
in various application domains. The modern IoT data pipeline applications generate massive
amounts of data and encompass complex processing tasks, including gathering, storing, and
analysing raw-input data, which can overwhelm centralized Cloud-based computing
infrastructures [1]. Without proper processing power for timely handling, the collected assets
often remain unused, which in the absence of a meaningful exploitation expose more risks
than value.

Recently, the so-called computing continuum that federates the Cloud services with emerging
Fog and Edge resources, presented a relevant computing alternative for supporting the
complex Big Data pipelines. However, eminent challenges in automating the processing of the
IoT pipelines across the Computing Continuum still remain [2]. These include scheduling,
deployment, and orchestration of the Big Data pipelines. Unfortunately, the heterogeneity of
the computing continuum limits the possibility for utilizing resources provisioned by different
providers, which further hinders the execution of the complex data pipelines with strict
computing and network requirements.

Overall, the resource management across the continuum requires significant research effort,
as the current data processing pipelines are dynamic, whereas traditional resource
management strategies are static, which leads to inefficient pipelines scheduling and overly
complex process deployment [3, 4]. Besides, with the advent of microservices architectures
and containerization, the scheduling approaches must consider the proper data stream
characteristics, facilitate networking connectivity, and provide optimized configuration of the
complex pipeline with guaranteed scalability from the execution performance perspective.

Therefore, in this deliverable, we describe a novel matching-based data pipeline scheduling
model, named ADA-PIPE Scheduler (ADS), to address the problem of scheduling complex Big
Data pipeline applications represented as directed acyclic graphs on heterogeneous
computing continuum resources. ADS approaches this problem using matching theory
principles involving two sets of players [5]:

 Pipeline steps (tasks) rank the continuum resources based on their pipeline processing
and queuing time.

 Cloud, Fog, and Edge resources rank the tasks based on their pipeline transmission
time.

The ADS two-sided matching-based scheduling model, integrated within the ADA-PIPE tool,
assigns tasks to resources based on their mutual preferences, aiming to maximize the
aggregated gains of the tasks and the resources in terms of pipeline processing, and data
transfer and queuing times.

Hence, the main contributions of this deliverable are:

 A model for quantifying the data pipeline processing and queuing time tailored to
asynchronous data exchange by utilizing the data queues.

 A ranking strategy including the transmission time in the resource-side ranking to
localize the processing of users' data and meet the response time quality of service.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 9 of 25

© Copyright DataCloud Consortium 2021

 A modified two-sided stable matching model based on the resource utilization for
scheduling data pipeline on resources.

 An algorithm for scheduling of complex data pipeline on resources based on a two-
sided stable matching model by considering the resource utilization.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 10 of 25

© Copyright DataCloud Consortium 2021

2 STATE OF THE ART

This section reviews the state-of-the-art in task scheduling for Big Data pipelines in Cloud, Fog,
and Edge computing environment. We therefore create taxonomy, based on the optimisation
objectives utilized by the related approaches in the following categories:

 Traffic-aware scheduling: Arkian et al. [6] presented a geo-distributed stream
processing autoscaling model with the aim of maintaining a sufficient maximum
sustainable throughput between edge devices. Their model optimizes the throughput
per task of the workflow application. Tamiru et al. [7] designed an integrated scheduler
in Kubernetes orchestration platform for multi-cluster computing environments. The
authors modelled the resource requirement of the workload, the ingress traffic, and the
resource capacity of each cluster to decide on an appropriate application deployment.

 Cost-aware scheduling: De Maio and Kimovski [8] investigated the potential of Fog
computing for scheduling extreme data scientific workflows with the goal of optimizing
processing time, reliability and user's monetary cost. Therefore, the authors modelled
decomposition of the workflow with parallel tasks based on their dependencies, and
proposed a multi-objective optimization-based scheduling method. Sharghivand et al.
[4] proposed a two-sided matching solution to schedule IoT-data-analytics tasks on
cloudlets as part of the Edge environment. Their model determines the costs of the
Edge services based on cloudlet's and user's preferences to match the resources to
applications.

 Latency-aware scheduling: Menouer [9] designed a multi-criteria decision-analysis
model to solve the scheduling problem. Therefore, the author presented the TOPSIS-
based decision-making algorithm according to criteria such as the utilization of
resources, alongside the processing time the workflow tasks and data transmission
time. Fahs and Pierre [10] proposed a latency-aware scheduler for a Fog computing
infrastructure. The authors aimed to identify an appropriate replica scheduling model
that minimizes the tail user-to-replica latency and balances the workloads across
replicas of an application (i.e., minimizing imbalance). Hoseiny et al. [11] designed a
scheduling algorithm, based on an optimization model that is a weighted sum of overall
pipeline processing time, energy consumption, and percentage of completed tasks with
a given deadline. Lujic et al. [11] designed a model named SEA-LEAP as a data
locality-aware scheduling method to minimize overall processing time for on-demand-
analytics applications. The authors aimed to increase traffic safety by utilizing Edge
computing infrastructure.

 ADS contribution: These works investigate the task scheduling as an optimization
problem that minimizes the traffic, monetary cost or latency as main objectives, and
neglect the processing, queuing and transmission times. We extend the related
methods by researching a novel IoT data pipeline scheduling method based on a two-
sided matching that considers the interests of the involved stakeholders to maximize
the aggregated utility of tasks and resources to reach a stable equilibrium.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 11 of 25

© Copyright DataCloud Consortium 2021

3 REQUIREMENTS ANALYSIS

The requirements for the big data pipelines scheduling of the DataCloud project are extracted
from two main sources: analysis of the state-of-the-art literature (presented in Section 2) and
the interviews with the business partners.

We therefore utilize the following requirements to guide the modelling process of the ADA-
PIPE scheduler:

 RQ-ADAPIPE-1: Metric Specific Application Scaling.

 RQ-ADAPIPE-4: Limited Dynamic Scheduling.

 RQ-ADAPIPE-5: Requirement Definition per Task.

 RQ-ADAPIPE-8: QoS Guarantee for Tasks with Strict Deadlines.

 RQ-ADAPIPE-10: Avoidance of Highly Utilized Resources.

 RQ-ADAPIPE-12: Task Offloading on Edge and Mobile Devices.

 RQ-ADAPIPE-14: Data-Aware Pipeline Scheduling.

 RQ-ADAPIPE-15: Low Scheduling Overhead.

Besides, we also consider the following user stories, gathered with the AS-IS and TO-BE
interviews described in Deliverable D1.1:

 CER.ADA.US.03: Schedule the tasks in transparent manner. 

 MOG.ADA.US.01: Identify resources on the run that can support high stream data
rates.

 MOG.ADA.US.04: Provide support for both online and offline scheduling.

 JOT.ADA.US.04: Move the data close to the resource.

 JOT.ADA.US.08: Maintain request processing latency bellow 200 ms.

 BOSCH.ADA.US.02: Define the resources where the tasks can be migrated.

 BOSCH.ADA.US.04: Define the architecture and computing requirements of each
task. 

 TELLU.ADA.US.01: Identify resources where side pipelines can be executed in
parallel. 

Therefore, from the list of the requirements, we can conclude that the ADS scheduler and the
ADA-PIPE tool should provide means for low-latency scheduling, capable of offloading the task
execution on Fog and Edge devices with avoidance of highly utilized resources. Besides, the
ADS scheduler should be able to identify resources that can support processing of high data
streams, while maintaining the latency for processing the requests of the use case applications
below 200ms.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 12 of 25

© Copyright DataCloud Consortium 2021

4 SCHEDULING MODEL

4.1 PROBLEM DEFINITION

We represent a scheduling problem as a matching game using two disjoint sets of players:

 the tasks S of the big data pipeline W, and

 the resources registered in R-MARKET R.

The game aims to match a task si in S to a resource rj in R with sufficient capacity that
optimizes the aggregated utility of application and resource provider. Therefore, our aim is to
maximize the aggregated utility function by determining an equilibrium for stable matching of
the tasks to appropriate resources.

We define the pipeline as directed acyclic graph (DAG) that comprises different paths from the
producers to consumers, we inspect a valid matching sched for the tasks of every pipeline
level D(d) to maximize the aggregated utility function (see Section 3.2) of the tasks si in D(d) and
the resources sched [d, si]:

Subject to:

A task si in in level D(d) is matched to exactly one resource from its resources preference list
RPL[si]:

A resource can execute multiple tasks that are members of its task preference list TPL[rj] and
within its capacity cj considering the pipeline pipui:

The matching does not contain blocking pairs of tasks and resources that prefer matching each
other rather than their current assignments.

4.2 RANKING AND UTILITY MODEL

The model for matching tasks to resources uses a double ranking and utility strategy: task-
sided and resource-sided.

4.2.1 Task-side ranking

The task side ranking orders the resources for a task si in a resource preference list RPL[si]
based on the aggregated pipeline processing Tp and queuing times Tq:

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 13 of 25

© Copyright DataCloud Consortium 2021

4.2.2 Task-side utility

The task-side utility Us represents the gain obtained by a task si scheduled on one of its
preferred resources rj in RPL[si]:

where FIRSTTpq(RPL[si]) and LASTTpq(RPL[si]) are lowest, respectively highest pipeline
processing and queuing times of the resources in RPL[si]. The first resource in the preference
list RPL[si] provides the highest utility equals to one.

4.2.3 Resource-side ranking

The resource side ranking ranks the tasks for a resource rj in a task preference list TPL[rj]
based on the pipeline transmission time Tc(su,pipui,si):

where tc(su,e,si) is the data transmission time for data e from task su to task si.

4.2.4 Resource-side utility

The resource-side utility presents the gain obtained by a resource rj for executing one preferred
task si in TPL[rj]:

where FIRSTTc(TPL[rj]) and LASTTc(TPL[rj]) represent the pipeline transmission time of first,
respectively last task in the preference list TPL[rj].

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 14 of 25

© Copyright DataCloud Consortium 2021

5 SCHEDULING ALGORITHM

Algorithm 1 applies a matching-based heuristic method to schedule independent tasks per
level of big data data pipeline on the available resources in R-MARKET.

After initializing the scheduling lists, (line 2), the algorithm loops over the dependency levels
of the pipeline to rank the resources for independent tasks (line 5), and to rank the tasks for
the resources (lines 6 - 12). After ranking, the algorithm attempts to find the appropriate
matches based on the available resources (line 13). The matching function matches the task
to one of its preferred resources, and then allocates the resource due to task's required
capacity (despite of defining a fixed capacity for each resource in advance. The matching
function loops over the task and resource preference lists, in addition to checking for the over
capacity and the full capacity of resources. Therefore, the matching reaches to an equilibrium
while no task or resource have no other preferences than their current matched choices.
Finally, the scheduling algorithm estimates the earliest start time and assigns the appropriate
resource to the tasks (lines 14 - 16).

The task-side ranking algorithm presented in Algorithm 2 receives as input the tasks of level,
the data pipeline, and the set of resources and channels. The resource that guarantees a lower
pipeline processing and queuing time receives a higher rank. The task-side ranking algorithm
first initializes the resource preference lists for every task with the empty set in line 2.
Thereafter, it filters the resources that do not satisfy the memory MEM(si,pipui) and storage
STOR(si,pipui) requirements of a task (line 5). Afterward, it creates a list of tuples for each task
that associates the pipeline processing and queuing time of a task on a resource (line 6).
Finally, the algorithm sorts the resource preferences of each task based on its pipeline
processing and queuing time in descending order in line 11.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 15 of 25

© Copyright DataCloud Consortium 2021

Resource-side ranking algorithm presented in Algorithm 3, receives as input the resource
preference lists computed in Algorithm 2, along with the big data pipeline, the resource set, the
set of network channels L, and subset of tasks in level D(d). Similarly, the algorithm initializes
the task preference lists of a resource with the empty set in line 2. Afterward, each resource
ranks the tasks in a preference list in line 8 based on its pipeline transmission time. Finally, the
algorithm sorts the task preferences in descending order in line 12 based on the pipeline
transmission time. Hence, the task with a lower pipeline transmission time receives a higher
rank.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 16 of 25

© Copyright DataCloud Consortium 2021

6 ADA-PIPE SCHEDULER TRACE EXAMPLE

Figure 1 illustrates an example of using Algorithm 1 in the following steps:

1. Figure 1(a) exemplifies the input for scheduling four inter-dependent tasks on a set of
resources r0, r1, r2.

2. Figure 1(b) denotes three independent levels of big data pipeline. The levels are
computed by considering the downward levels starting from the producers of data and
ending with consumers of data. In this manner, the task s0 is in the first level since it
consumes data received from producer(s). The second level consists of all the tasks
dependent on the first-level tasks, which are tasks s1 and s2 in our example. Since s3
is dependent on tasks s1 and s2, then third level consists of just one task.

3. Figure 1c continues with the ranking of the tasks RPL and resources TPL for each
level. In resource preference list of task s0, r2 has the highest rank because it provides
the lowest pipeline processing and queuing time. From the other side, there is just one
task in task preference list of r2, therefore, r2 matches to s0.

4. Figure 1d shows that r2 and r1 matches to tasks s1 and s2, respectively, because they
rank these tasks as the highest ones with the lowest pipeline transmission times.

5. Figure 1e depicts the last level's task s3 that matches to its first preference r0, which
provides lowest pipeline processing and queuing time.

6. Figure 1f shows the scheduled resources and the earliest estimated start time est for
the tasks of all levels.

Figure 1: ADA-PIPE Scheduler trace example

(a) Exemplified IoT data pipeline work-
flow DAG.

(b) Determining the levels of data
pipeline workflow. (c) Ranking and matching of the 1st level.

(d) Ranking and matching of the 2nd level.

(e) Ranking and matching of the 3rd level.

(f) Scheduling output and estimated
start times of tasks.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 17 of 25

© Copyright DataCloud Consortium 2021

7 PRELIMINARY EVALUATION

We implemented the ADS matching-based big data pipeline scheduling in Python v.3.9 using
the matching library [13]. Then, we integrated our customized scheduler in Kubernetes
orchestrator tool v1.21 by utilizing the Python client library for Kubernetes v17.17 [14]. The
script required to run the ADS model is available in the DataCloud code repository1.

7.1 INFRASTRUCTURE SETUP

We deploy ADA-PIPE as a RESTful service in the Carinthian Computing Continuum C3
infrastructure testbed, providing a rich set of resources across the Cloud, Fog, and Edge
layers, illustrated in Table 1.

Table 1: Infrastructure configuration

We utilized the Prometheus operator monitoring system v0.45.02 for monitoring the
Kubernetes services and deployment alongside the network traffic, bandwidth, latency and
resources utilization rates.

We utilized the asynchronous message queue architecture KubeMQ v2.2.13 to implement data
exchange between tasks. KubeMQ provides a message queue for every pipeline task to store
messages from its upstage tasks.

7.2 RELATED WORK COMPARISON

We conduct the performance comparisons against three state-of-the-art approaches:

 Heterogeneous Earliest Finish Time -- only Cloud (HEFT-oC) schedules all tasks on
the Cloud and selects the proper Cloud instances using a bottom ranking approach to
optimize the pipeline completion time [15].

 Kubernetes container scheduling strategy (KCSS) schedules all tasks on Edge and
Fog resources using the Topsis algorithm based on multiple criteria such as pipeline

1 https://github.com/SiNa88/example-kubernetes-scheduler

2 https://github.com/prometheus-operator/prometheus-operator

3 https://github.com/kubemq-io/kubemq-community/releases/tag/v2.2.10

Cloud Fog Edge
AWS Google A1/Exoscale A1/Exoscale Edge Edge

-Virginia n2 large medium large medium NvJ RPi4 RPi3
t2.xlarge -standard instance instance instance instance

CPU (#cores) 4 4 4 2 24 16 4 4 4
MEM (GB) 16 16 8 4 32 16 4 4 1
STOR (GB) 8 8 10 10 32 32 16 16 16
BW (Mbit s− 1) 100 870 840 839 920 900 450 800 328
LAT (ms) 101 23 11.5 11.9 0.3 0.3 1 0.4 1

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 18 of 25

© Copyright DataCloud Consortium 2021

completion time, the number of Docker images and the number of running containers
on each resource [9].

 SEA-LEAP minimizes data pipeline completion time, and identifies an Edge resource
closer to the dataset distributed on multiple Fog and Edge resources [12].

7.3 USE CASE APPLICATION

We selected a representative traffic management system case study following road safety
inspection concerns. We represent this application as a DAG of six tasks depicted in Figure 2.
Every task communicates with its upstage tasks through a message queuing system:

1. Encoding encodes the raw video in various bitrates and resolutions.

2. Framing utilizes OpenCV to produce still frames.

3. Inference creates an inference model with high accuracy.

4. Dataset storage provides the stored records for other stages.

5. Training updates and retrains the multi-class classification model with a high accuracy.

6. Packaging and delivery provide the detected signs in the format required by the drivers.

Figure 2: Use case application pipeline

7.4 MONITORING

We collect the computing and networking metrics with the Prometheus monitoring tool4 in the
following manner:

1. Get remotely connected to the utilized devices.

2. Redirect the traffic received on port number 9090 to the local machine where the data
can be analysed. The following command redirects the traffic from a specific port of
the Kubernetes master node to your local machine:

4 https://prometheus.io/docs/introduction/overview/

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 19 of 25

© Copyright DataCloud Consortium 2021

ssh -L 9090:localhost:9090 edgegateway@egs-itec.aau.at

3. We Set up a kube-latency5 container on a worker node to measure bandwidth and

latency of the Kubernetes network.

4. We use the following commands to gather various monitoring data:

 physical link latency between every two nodes will be calculated:
sort_desc(avg(ping_durations_s{quantile='0.99'})by(source_node_name,dest_nod
e_name))

 the amount of data (in terms of bytes) received by any node during the last hour:
sort_desc(rate(node_network_receive_bytes_total{device="eth0"}[1h]) *8
/1024/1024)

 the amount of data received by a special container:
sort_desc(container_network_receive_bytes_total{pod=~"name.*"}

7.5 SCHEDULER EXECUTION

The scheduler executes in a main loop. The main loop of the scheduler waits for a new pipeline
task comprising a container of the use case application in the pending state alongside a
specification assigned by the ADS.

Then, it sets the pending pod to the node selected based on the ADS algorithm. Afterward,
one by one the pending pods will be deployed and executed on the selected devices, as shown
in the figure below:

5 https://github.com/simonswine/kube-latency

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 20 of 25

© Copyright DataCloud Consortium 2021

The output of the scheduling plan shows the nodes on which the nodes will be scheduled such
as gateway device in C3 testbed:

After the execution of scheduler, the pods status changes to Running state:

7.6 EVALUATION SCENARIO

We evaluated the ADA-PIPE scheduler compared to the related SEA-LEAP, KCSS, and
HEFT-oC methods using the video pipeline for traffic sign classification. We selected a raw 9
seconds long video with size of 45 MB.

We designed a set of experiments according to the pipeline characteristics related to the
encoding bitrate. The encoding bitrate experiments investigate the impact of CPU
requirements for encoding the raw video segment. We considered five encoding bit rates of
200, 1500, 3000, 6500, 20000 kbps. We further considered two machine learning models with

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 21 of 25

© Copyright DataCloud Consortium 2021

70% and 90% accuracy for the inference and training tasks with different CPU requirements.
We fixed the size of the data element to 2560 kbytes.

7.7 RESULTS

Figure 3 shows that by increasing the number of tasks while providing the same amount of
computing and storage resources, the task utility reduces. The reason is that ADS matches
the higher-ranked tasks to highly provided bandwidth resources such as the Edge instances.
Therefore, there are just a few tasks matched to their lower-ranked resources that do not
impact on the whole utility. From the resource-side perspective, the resource utility increases
and ADS matches more tasks to resources because of the larger available resource capacities.
However, when the number of tasks reaches to thirty because of the limited resource
capacities, the resource-side utility reduces.

Figure 3: Task and resources utility for different number of tasks

Figure 4 depicts the earliest start time of pipeline tasks. As observed, by utilizing the queue as
a temporary storage between tasks, especially between inference and training tasks, alongside
training and packaging tasks, we reach improvement in terms of the earliest start time of the
tasks.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 22 of 25

© Copyright DataCloud Consortium 2021

Figure 4: Earliest start time for each task in the pipeline

Figure 5 denotes that ADS reduces the completion time by 14 compared to SEA-LEAP
because ADS selects the Edge instance that is closer to the sources and the dataset that is
located on the Fog resources.

In addition, ADS reduces the completion time, on average, 56% compared to KCSS, which
tends to schedule the tasks on the Cloud instances without considering the transmission time
to reach the Cloud; however, this strategy is not proper for deadline-constrained applications.

In other words, unlike the related methods, ADS searches for tradeoff by scheduling on
resources with lower pipeline transmission time to the data sources and higher computational
speed; therefore, it improves the completion time by reducing the pipeline transmission time
and the pipeline processing and queuing time that leads to reduced pipelines's completion
time.

Figure 5: Pipeline completion time for different bitrates

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 23 of 25

© Copyright DataCloud Consortium 2021

8 CONCLUSIONS

In this deliverable, we introduced ADS, a matching-based scheduling method integrated within
the DataCloud infrastructure that considers the pipeline processing and transmission times for
scheduling the Big Data data pipeline on the computing continuum. ADS uses a two-sided
matching algorithm to schedule the tasks based on their pipeline processing requirements, and
the available computation and communication capabilities from the resource provider
perspective.

To solve the scheduling and provisioning problem, ADS determines the dependency levels of
pipeline's DAG. Afterward, ADS approaches this problem using matching theory principles
involving two sets of players. First, every level of pipeline ranks the continuum resources based
on their pipeline processing and queuing times. Second, Cloud, Fog, and Edge resources rank
the tasks of the level based on their pipeline transmission time. After ranking, ADS matches
the tasks to resources in the case they have enough capacity until all the data pipeline tasks
are matched to the resources.

We have conducted preliminary evaluation of ADS and integrated it with Kubernetes and
Prometheus. The results also show that ADS is more energy-efficient than other related work
approaches. In other words, since ADS inspects the Cloud, Fog, and Edge resources that have
enough computational capabilities and can lower pipeline transmission time, we achieved 14
- 68% lower completion time.

In addition, we also provide in this deliverable a full user manual, case study application and
source code of the scheduler.

In the future, we plan to further explore a heuristic-, matching-based pipeline scheduling in the
computing continuum, and integrate the scheduler with SIM-PIPE, R-MARKET and DEP-PIPE.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 24 of 25

© Copyright DataCloud Consortium 2021

9 REFERENCES

[1] Sunil Singh Samant, Mohan Baruwal Chhetri, Quoc Bao Vo, Ryszard Kowalczyk, and Surya
Nepal. Towards end-to-end qos and cost-aware resource scaling in cloud-based iot data
processing pipelines. In 2018 IEEE International Conference on Services Computing (SCC),
pages 287–290. IEEE, 2018.

[2] Mutaz Barika, Saurabh Garg, Albert Y Zomaya, Lizhe Wang, Aad Van Moorsel, and Rajiv
Ranjan. Orchestrating big data analysis workflows in the cloud: research challenges, survey,
and future directions. ACM Computing Surveys (CSUR), 52(5):1–41, 2019.

[3] Sarder Fakhrul Abedin, Md Golam Rabiul Alam, SM Ahsan Kazmi, Nguyen H Tran, Dusit
Niyato, and Choong Seon Hong. Resource allocation for ultra-reliable and enhanced mobile
broadband iot applications in fog network. IEEE Transactions on Communications, 67(1):489–
502, 2018.

[4] Nafiseh Sharghivand, Farnaz Derakhshan, Lena Mashayekhy, and Leyli Mohammad
Khanli. An edge computing matching framework with guaranteed quality of service. IEEE
Transactions on Cloud Computing, pages 1–1, 2020.

[5] Narges Mehran, Dragi Kimovski, and Radu Prodan. A two-sided matching model for data
stream processing in the cloud – fog continuum. In 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages 514–524. IEEE, 2021.

[6] Hamidreza Arkian, Guillaume Pierre, Johan Tordsson, and Erik Elmroth.
Model-based stream processing auto-scaling in geo-distributed environments. In ICCCN 2021-
30th International Conference on Computer Communications and Networks, 2021.

[7] Mulugeta Tamiru, Guillaume Pierre, Johan Tordsson, and Erik Elmroth. mck8s: An
orchestration platform for geo-distributed multi-cluster environments. In ICCCN 2021-30th
International Conference on Computer Communications and Networks, 2021.

[8] Vincenzo De Maio and Dragi Kimovski. Multi-objective scheduling of extreme data scientific
workflows in fog. Future Generation Computer Systems, 106:171 – 184, 2020.

[9] Tarek Menouer. Kcss: Kubernetes container scheduling strategy. The Journal of
Supercomputing, 77(5):4267–4293, 2021.

[10] Ali J Fahs and Guillaume Pierre. Tail-latency-aware fog application replica placement. In
International Conference on Service-Oriented Computing, pages 508–524. Springer, 2020.

[11] Farooq Hoseiny, Sadoon Azizi, Mohammad Shojafar, Fardin Ahmadiazar, and Rahim
Tafazolli. Pga: A priority-aware genetic algorithm for task scheduling in heterogeneous fog-
cloud computing. In IEEE INFOCOM 2021 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1–6, 2021.

[12] Ivan Lujic, Vincenzo De Maio, Srikumar Venugopal, and Ivona Brandic. Sea-leap: Self-
adaptive and locality-aware edge.

[13] Henry Wilde, Vincent Knight, and Jonathan Gillard. Matching: A python library for solving
matching games. Journal of Open Source Software, 5(48):2169, 2020.

D5.1 Data-aware resource provisioning across the Computing Continuum

Page 25 of 25

© Copyright DataCloud Consortium 2021

[14] Michael Chima Ogbuachi, Anna Reale, Peter Suskovics, and Benedek ´ Kovacs. Context-
aware kubernetes scheduler for edge-native applications on 5g. Journal of Communications
Software and Systems, 16(1):85–94, 2020.

[15] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE transactions on parallel and
distributed systems, 13(3):260–274, 2002.

